Karbidy a nitridy
Neoxidová žárovzdorná keramika.
Karbid křemíku a nitrid křemíku, karbid boru a nitrid boru jsou nejdůležitějšími zástupci tzv. neoxidové keramiky. Neoxidová keramika je chemicky velmi stálá za vysokých teplot. Výjimkou je špatná odolnost proti oxidační atmosféře, v ostatních směrech je jejich chemická odolnost vynikající. Materiály obsahující sloučeniny křemíku mohou být do 16000C použity i v oxidační atmosféře, díky vytvářené pasivační vrstvě SiO2 na jejich povrchu. Pro technické použití jsou zvláště důležité jejich mechanické vlastnosti, vysoká pevnost a tvrdost, ve kterých převyšují vlastnosti oxidové keramiky, zejména při teplotách nad 10000C.
Karbid křemíku byl objeven náhodně v roce 1891 a označen názvem carborundum, podle toho, že jeho tvrdost v Mohsově stupnici 9,5 leží mezi tvrdostí C carbon (diamant) a Al2O3 corundum. Průmyslově se vyrábí reakcí velmi čistého křemenného písku s uhlíkem (koksem nebo antracitem) v elektrické odporové peci (2200-24000C) SiO2 + 3 C = SiC + 2 CO. Technické využití pro SiC bylo původně jako vynikající brusivo, díky jeho tvrdosti a také zvláštní lámavosti při které vznikají velmi ostré řezné hrany. Možnosti jeho využití jsou však mnohem širší.I přes poměrně vysokou cenu má karbid křemíku význam jako žárovzdorný výrobek, k rozkladu dochází teprve při 27000C, přičemž se využívá jeho vynikajících vlastností, jako vysoké tepelné vodivosti, tvrdosti a mechanické pevnosti. Používá se v pecích pro destilaci zinku a pro výrobu pouzder a vypalovacích pomůcek v keramickém průmyslu a při výrobě ocelí. Cihly z karbidu (karborundové cihly) jsou pojeny jílem nebo nitridem křemíku Si3N4. Budoucnost keramiky z karbidu křemíku se očekává v jejím použití při výrobě teplotně vysoce namáhaných částí strojů a zařízení, jako v plynových turbínách a vznětových motorech. Díly mohou bez chlazení pracovat až do teploty 14000C a jsou o 60% lehčí jako vysokoteplotní slitiny z kovů.
Nitrid křemíku má při použití na keramiku podobné vlastnosti jako karbid křemíku a může být použit v týchž oborech. Prášek Si3N4 se vyrábí termicky reakcí elementárního křemíku s plynným dusíkem při 1200-14000C, 3 Si + 2 N2 = Si3N4.
Karbid bóru se vyrábí rozkladem oxidu boritého uhlíkem v elektrické odporové peci při 24000C, 2 B2O3 + 7 C = B4C + 6 CO. Karbid boru vznikající tímto procesem je tvořen hrubými tvrdými zrny a je vhodný pro použití v brusných prostředcích a jako výchozí materiál pro výrobu kovových boridů. Jemný disperzní prach karbidu boru se získává reakcí oxidu boritého s hořčíkem nebo hliníkem za přítomnosti uhlíku. Tento se zpracovává na keramické výrobky, které nacházejí použití při výrobě pancéřových desek a ochranných štítech bojových letadel, nebo v jaderných elektrárnách jako stínicí materiál pro neutrony. Jako zajímavost karbid boru a borid beryllia byly zjištěny jako nejúčinnější materiály v neprůstřelných vestách.
Nitrid bóru existuje jako hexagonální modifikace s krystalovou strukturou podobnou grafitu a jako kubická modifikace se strukturou diamantu. Hexagonální nitrid bóru BN, má vlastnosti podobné grafitu a používá se jako vysokoteplotní mazivo nebo rozpojovací prostředek při lití kovů (je však elektricky nevodivý!). Tavicí tyglíky z tohoto nitridu boru se používají pro vysoce čisté kovy nebo polovodiče a jako žárovzdorné vyložení plazmových hořáků, raketových trysek a spalovacích komor.
Kubický nitrid bóru (Borazon) se vyrábí z hexagonálního BN vysokotlakou syntézou při 5000 až 9000 MPa a 1500 až 22000C. Kubický nitrid boru je po diamantu nejtvrdší známou látkou. Používá se jako brusný prostředek, kde vzhledem ke své lepší chemické stálosti při vysokých teplotách může nahradit diamant.
Slinuté karbidy, nitridy, boridy a silicidy.
Technicky důležité tvrdé hmoty se dají rozdělit do dvou skupin, na kovové a nekovové.
Do nekovových tvrdých hmot zahrnujeme diamant, korund (Al2O3) a ostatní tvrdé materiály jako karbid křemíku a karbid boru, které byly uvedeny v předchozí části.
Následující část uvádí karbidy, nitridy, boridy a silicidy kovů. Podle vyráběného množství, jsou z této skupiny látek nejdůležitější karbid wolframu WC (odhadovaná světová produkce 18 000 t) a karbid titanu TiC (1 500 t). Vyráběná množství ostatních slinutých karbidů jsou menší než množství karbidu titanu.
Slinuté materiály jsou slitiny sestavené z velmi tvrdých a vysokotajících kovových karbidů, pojených nížetajícími kovy skupiny železa, především kobaltem. K výrobě slinutých materiálů se používají postupy práškové metalurgie, které jsou obdobné keramickým postupům. Nejdříve se mokrým mletím v kulových mlýnech vyrobí jemná disperze karbidu s pojivou kovovou fází. Po oddělení mlecí kapaliny následuje vakuové sušení a vylisování tvaru. Výlisek se poprvé slinuje při 900 až 11500C, materiál se opracuje a konečné slinování probíhá při 1400 až 17000C, za velmi nízkého tlaku a ve vodíkové atmosféře.
Karbid wolframu, WC je technicky nejdůležitějším kovovým karbidem. Hlavní použití WC je ve slinutých materiálech (tvrdokovech), které se používají při obrábění kovů. Pro speciální použití se v malých množstvích vyrábějí ještě karbidy zirkonia ZrC, hafnia HfC, vanadu VC, tantalu TaC, niobu NbC, chromu Cr3C2 a molybdenu Mo2C. Karbid tantalu TaC má technický význam jako slinutý karbid v řezných materiálech ve směsi z jinými karbidy.
Karbid titanu, TiC se vyrábí z čistého TiO2 a sazí v indukční peci při 2000 až 22000C. Karbid titanu má ze všech kovových karbidů největší tvrdost, ale samotný se používá jen málo, protože je příliš křehký. Jeho hlavní použití je proto pro tvrdokovy (slinuté karbidy).
Řezné materiály jsou slinuté karbidy soustavy WC-Co a jsou určeny k obrábění litiny, mědi a jejích slitin, hliníku a jeho slitin, plastických hmot a skla. Slinuté karbidy soustavy WC-TiC-Co se používá k obrábění ocelí, v této soustavě se vedle TiC používá TaC, WC-TiC-TaC-Co. Objem kobaltu je podle složení a použítí od 4 do 20%.
Nitridy kovů jsou ze stejných kovů jako předchozí karbidy (TiN, ZrN, HfN, VN, NbN, TaN, CrN, Cr2N, Mo2N, W2N) a mají rovněž podobné vlastnosti jako odpovídající karbidy. Jejich ekonomický význam je velmi malý. Malá technická využitelnost nitridů je také způsobena jejich špatnou smáčivostí kovy skupiny železa (kobaltem), která ztěžuje výrobu slinutých materiálů. Využívají se jen některé speciální vlastnosti, např. lanthanu a yttria jako supravodiče s vysokou kritickou teplotou (35 K, event. 93 K).
Boridy kovů lze rovněž připravit ze stejných kovů jako karbidy. Boridy se vyznačují vysokými body tání (i přes 30000C), dobrou elektrickou vodivostí a chemickou stálostí, jsou ale těžko opracovatelné. Jejich širšímu využití brání také to, že se nedají zpracovat jako karbidy spojujícím kovem na slinuté materiály. Technicky se využívají pouze borid titanu TiB2 a boridy chromu CrB a CrB2 a to jako materiál na turbínové lopatky, vnitřní povrchy spalovacích komor, raketových trysek a odtavovacích štítů.
Silicidy kovů lze rovněž připravit ze stejných kovů jako karbidy nebo nitridy. Mají nižší teplotu tání, nižší tvrdost a navíc jsou ještě velmi křehké a nehodí se proto do slinutých materiálů. Mají nejmenší technické využití. Mají vysokou chemickou stálost např. proti oxidaci. Z disilicidu molybdenu MoSi2 se zhotovují elektrické topné dráty se kterými je možno pracovat na vzduchu až do teploty 16000C.